百亿上海未来产业基金登场:挖掘一批新型科技投资人,培育一批新型科技创业者

今日的决心选择了后天的命运,如何让中国创新引领全球科技,布局未来产业成为今天中国推动科技产业引领世界的必经之路。

过去,我们习惯了“1到10、1到100”跟随式创新,今天,中国更需要的是“从0到1”原创式创新。原创式创新从哪里来,如何为“从0到1”修路架桥,从而建立起全新的“从0到100”的科技生态链?

2024年9月,上海宣布成立首个百亿级未来产业基金,作为上海未来产业基金的管理人,上海未来启点私募基金管理有限公司总经理魏凡杰一直在琢磨这个问题,“未来基金要解决一个什么问题?我们其实之前也没有完全想明白。”

2025年1月7日,在上海未来产业基金完成备案注册当日、品牌正式发布前夕,作为未来产业基金总经理的魏凡杰对澎湃科技说,“现在我们已经完全想明白了,我们就做一件事,就是怎么样把中国投入了众多科研经费的科研成果和产业界的联系建立起来,把‘0到1’真正地衔接起来。”

魏凡杰强调,做成这件事关键要支持一批年轻人,包括年轻的投资人、年轻的科学家、年轻的创业者,构建起新型科创生态,全方面赋能科创企业,进而托举起中国的未来产业。

1月8日,上海市政府副秘书长尚玉英、上海市科委主任骆大进、上海国投公司董事长袁国华共同启动上海未来产业基金品牌。

探索科技成果转化无人区,孵化中国的Flagship

中国缺乏原创式创新,在魏凡杰看来,这其中既有参与者的认知因素,也有时代机遇的流转。“过去40年里,中国投入科研的经费并不少,但基础研究基本都在高校、研究机构中,写成论文就结束了;在产业界的科技创新中,原创的比例是很小的,中国的很多所谓创新其实是来自模仿和学习。”

真正的颠覆式创新需要10年甚至20年时间的积累,这类研究绝大多数都在大学或研究所里。中国要成为一个真正的创新大国,需要把这部分颠覆式创新技术挖掘出来利用到产业中。但当下企业一般最多会做未来五年能用到的技术研究作为储备。

“这就导致和国外相比,中国工业界跟学术界之间的联系很少,中国的工业界也接不住学术界的原始创新成果。”魏凡杰说。

在美国,投资机构Flagship孵化了全球制药巨头莫德纳公司,是投资科学、科学变产业的典型案例。而在中国,以往众多成功的投资案例来自于投资人对于商业模式的选择,投资人普遍缺乏将科学变成产业的能力。

此外,对于早期投资来说,很多投资基金在操作上也存在难度。投资“1到10,10到100”的基金每次出手起码都是千万级别,但“0到1”的技术孵化项目最初并不需要太多资金,几百万元可能就够了。虽然今天“投早、投小、投硬”成为了众多基金投资人在演讲时的口号,但真正愿意为此付诸行动的并不多,原因在于投早期需要管理更多的项目,更长时间的等待,以及除了资金之外,需要给予更多包括人才、组织管理、供应链等等资金以外的支持。

毕业于北京大学物理学专业和多伦多大学材料工程的魏凡杰,在此之前已经从事了多年的科研成果转化工作。2017年,当投资人都在投资互联网企业,魏凡杰的团队已经在布局硬科技投资。在担任北京科创基金执行总经理的7年多时间里,他几乎天天和科学家打交道。多年的科技成果转化经历让他清晰看到科技成果转化的难点和痛点,“科学家往往贡献的是从0到1的科研成果,越往产业化之路纵深推进,技术对商业能否成功的决定因素比例会逐渐降低。”

虽然难点和痛点显而易见,但在魏凡杰看来,现在已经来到了探索科技成果转化,推动“从0到1”原创式创新的最好时机。

一方面是政府支持的革新。推进中国式现代化,科技要打头阵,新一轮的科技革命和产业变革浪潮中,带动性极强、发展潜力巨大但又需要长期研发投入和持续积累的硬科技,正在成为各个国家争相布局的主战场。另一方面科技迭代进程的加快,科技公司组织管理方式的差异,风投孵化模式的创新以及人工智能的催化,都使得打通产业界与学术界的联系、促成科技创新成果转化变得越来越有必要,这对于推动中国科技强国战略来说非常重要。

去年9月,上海设立首个百亿级未来产业基金,总规模100亿元,由上海市财政全额出资,基金期限长达15年,可根据情况申请延长3年。

“我们是耐心资本,我们要推动中国'从0到1'的科技成果转化的探索,我们希望未来有无穷的可能性。”在1月8日举行的上海未来产业基金投资策略及品牌发布会上,魏凡杰作出上述表示。“孵化中国的Flagship”,是魏凡杰对于上海未来产业基金定位的另一个更为直接的解释。

上海未来产业基金管理人魏凡杰。

挖掘和培育一批年轻科学家、投资人、创业者

未来产业基金将采用“直接投资+子基金投资”模式,但无论是对于子基金的选择还是投资项目的选择,都离不开对人的选择。在当日发布会上,魏凡杰表示,除了要成为真正的耐心资本,也希望基于上海未来产业基金构建全球化的人才社区。当日,发布会汇聚了来自国内脑机接口、量子计算、人工智能、生命科学等各类前沿科学领域的顶级科学家、创业者,以及投资人。

100亿元的未来产业基金规模是限定的,对于未来产业基金来说,更重要的作用是撬动起更多的社会资源,让更多人听到未来产业基金吹响的创新号角,并投身其中。

魏凡杰说,未来产业基金将以人为核心,通过母基金的纽带把科学家、企业家、创业者、项目经理人和投资人的顶尖智力与能力在同一个平台上打通。在他的工作计划中,未来产业基金要建立战略科学家委员会、科技项目经理人投研团队和概念验证经费联动投入等机制,完善从源头发现到产业转化的链路。

其中,战略科学家委员会负责战略性研判未来产业方向,发现前沿领域优秀投资对象。“我们不会什么未来产业都干,更多是有一个方向值得干,我们就重仓。我们跟投资人、战略科学家一起看方向,比别人更早看到信号,提前布局。”

以往的投资模式不适用于科技成果转化,在魏凡杰看来,传统的风险投资人也不适合投资未来产业,未来产业基金要发掘一批在细分科技领域具备认知的年轻的专业投资人,建立起全新的投资理念。

“我们已经进入了中国科技成果转化无人区,我们在探索很多新东西。”魏凡杰表示,以概念验证经费联动投入机制为例,很多论文发布后要经历做实验的“原型机”阶段,国家投入了巨额的科研经费,但因为缺乏具备市场化判断能力的机构和投资人参与,使得项目转化成功率不高。

为了提高科技成果转化效率,可以让投资人参与概念验证项目,既给了投资人投资的机会,也考验投资人的眼光,因为参与的投资人也需要真刀实枪掏钱投入其中。“投资人愿不愿意投?投资人愿意投政府就投。如果干成了,财政资金可以将部分超额收益让利给投资人。”

未来产业基金的一个重要工作就是要找到和培育最优秀的投资人。魏凡杰相信未来中国的风险投资将涌现一批小而美、小而精的专业投资人,这些投资人具备高学历和科学认知,能够及早发现有潜力的早期创新项目,能够和科学家、创业者对话,聚焦深度孵化,为项目赋能。

有了科学家和投资人,“从0到1”,从学术走向产业,还有不可或缺的企业家。由于和太多科学家打过交道,魏凡杰深知运营一家公司需要的能力常常是科学家所不具备的,科技项目经理人也是打造科创生态中和科学家、投资家同等重要的一类人才。未来产业基金正在筹划的科技项目经理人投研团队,便是负责支撑项目布局策划,协同各类资源,推进项目的概念验证、落地孵化和产业化等各类工作的重要角色。科技项目经理人如果能顺利将科研成果转化成公司,他也自然可以成为科创公司的管理者。依托母基金平台,与高质量孵化器、新型研发机构、风险投资机构等合作构建上海创业者社区,挖掘企业家人才。

在这一过程中,未来产业基金希望能支持更多年轻的科学家、创业者和投资人,构建全新的科创生态。“年轻一代会颠覆上一代,永远要相信年轻人的潜力。”魏凡杰对澎湃科技说,他相信未来上海一定能够建立从0到1、从1到100的更加健康可持续的科技创新生态系统,促进创新源头的优秀成果转化为新质生产力。

看,首张来自海洋最深处的生态系统图,由中国科学家绘制

8919米水下,雅蒲海沟最深区域的奇特水母。

“当你凝视深渊时,深渊也在凝视你。”海洋的最深处有什么?

2025年3月6日,由中国科学家发起的“马里亚纳海沟环境与生态研究计划”(MEER)一期研究成果正式发布。

以封面专辑的形式,四篇相关论文在线发表于国际顶级期刊《细胞》(Cell)上:1篇旗舰文章勾勒项目全貌,3篇研究论文分别聚焦深渊中的原核微生物、无脊椎动物(钩虾)和脊椎动物(鱼类)。

相关研究由中国科学院深海科学与工程研究所、上海交通大学和华大集团等共同主导,首次系统地揭示了深渊生态系统的生命适应策略和资源潜能,拓展了人类对极端环境下生命过程的认知。

研究人员构建了迄今最完整的深海原核微生物基因数据集,并鉴定出7564个物种水平的代表性基因组,其中89.4%、约6762种是尚未被报道过的新物种,其多样性与全球已知海洋微生物总量相当。

此外,研究人员在来自马里亚纳海沟的生物物种中检测到了持久性有机污染物的存在。这显示了人类活动对海洋的影响。

更大的科学视野:异常繁盛的生态系统和生命如何在极端环境下幸存

深海,尤其是超深渊带,具有高静水压、低温和近乎完全黑暗的特点,是地球上对生命来说最具挑战性的环境之一。马里亚纳海沟是地球上已知最深的海沟,位于菲律宾东北和马里亚纳群岛附近的太平洋底,全长2550千米,弧形海沟,平均宽70千米,最大深度为海平面下1万米,可装下整个珠穆朗玛峰。根据科学家的推测,这条海沟是太平洋板块俯冲到亚欧板块之下形成的,已经存在了六千万年。

此次,中国科学家在海洋最深处发现了一个异常繁茂的生态系统。深渊微生物通过“精简型”和“多能型”两种适应策略,在深渊高压、低温、寡营养环境中异常繁盛,例如微生物利用芳香族化合物应对寡营养的生存环境。

甲壳动物端足目的一些物种,如深海钩虾,是超深渊海沟中最为成功的定居者之一,在所有采样的海沟中广泛分布。但人们此前对其遗传适应性和种群动态了解甚少。最新发表的研究发现,钩虾基因组达13.92GB,是人类基因组(3.2GB)的4倍多,刷新了端足目的基因组纪录。

最新发表的论文介绍,海斗深渊海沟是板块俯冲的终点,它连接着海洋与地球深部,凭借独特的生态系统和极端的环境条件,发挥着不可替代的作用。MEER项目研究数据补充完善了人们对全球海洋生态系统的认知。

万米海底采样(01:04)

“奋斗者”号载人潜水器首次系统性科学部署

在2020年之前,只有9个人到访过地球的最深处——马里亚纳海沟的沟底,这里是地球上人类探索最少的领域之一。

依托中国自主研发的“奋斗者”号载人潜水器及国产化科研体系,2021年,中国科学家在“探索一号”科考船的TS-21航次上启动“马里亚纳海沟环境与生态研究计划”。该航次是“奋斗者”载人潜水器首次系统性科学部署。

2021年8月至12月期间,“奋斗者”载人深海潜水器每五天在10000、9000和8000米的深度进行三次下潜,每次水下作业时间超过6小时。这种高密度水下观测和采样计划为深海海沟的现场科学研究提供了前所未有的机会。

海底采样(00:14)

截至目前,TS-21 航次已在马里亚纳海沟及其邻近的雅浦海沟和菲律宾海盆完成33次下潜,作业深度在5926至10909米之间,累计海底作业时间超过 2000 小时,成功从227个活塞岩芯(约1700份分层沉积物样本)中采集到了海斗深渊微生物样本、12份原位过滤海水样本,以及涵盖6000米至10900米水深的典型海斗深渊大型生物样本(包括端足类动物和鱼类)。

澎湃科技获悉,基于研究成果,中国科学家建立的全球唯一的深渊生物大数据库于近日上线,其中包含微生物基因组、钩虾及鱼类基因组数据集,数据规模相当于过去十年全球海洋微生物研究的总量。

“奋斗者”号机械手在马里亚纳海沟取样。

多名科学家及多项成果获中国科学院2024年度杰出科技成就奖

今天(16日)中国科学院在北京表彰获2024年度中国科学院杰出科技成就奖的科学家和科研成果。

中国科学院物理研究所陈立泉院士、中国科学技术大学陈仙辉院士获个人成就奖,

“银河系早期形成与演化”等4项成果获基础研究奖,“大规模压缩空气储能新技术与应用”等5项成果获技术发明奖,

“黑土区耕地退化阻控与地力提升关键技术”等5项成果获科技攻关奖。

据了解,获个人成就奖的陈立泉院士自1976年起就从事并坚守锂电池研究,在我国最早开展锂电池基础研究和技术攻关,为我国锂电池从无到有、从“跟跑”到“领跑”作出了奠基性贡献。另外一名获个人成就奖的陈仙辉院士长期从事量子材料领域研究,在笼目超导体、界面超导、磁性拓扑绝缘体等前沿领域持续做出引领性工作。

2024年,为贯彻国家科技奖励改革精神,中国科学院修订了《中国科学院杰出科技成就奖励条例》,强化奖励导向,设立4个奖项实行分类评价。个人成就奖主要奖励长期活跃在科技前沿、取得重大创新成就、对相关学科领域发展作出卓越贡献的杰出科学家;基础研究奖旨在激励在基础研究和应用基础研究方面取得重大科学发现和原始创新成果;技术发明奖旨在激励在应用研究和技术开发方面获得高价值知识产权,通过推广应用取得显著经济效益、社会效益或生态效益;科技攻关奖旨在激励在国家重大科技攻关任务中突破关键核心技术,在解决国家重大战略需求或保障国家安全方面发挥关键作用。

研究称长期压力大的成年女性中风风险增加,但未在男性中发现此关联

北京时间3月6日,美国神经病学学会医学杂志《神经病学》(Neurology)在线发表的一项研究称,压力和中风之间存在关联,一些长期处于压力下的人患中风的风险更高。

“脑卒中”即人们常说的“中风”。《中国脑卒中防治报告(2023)》称,“脑卒中”是中国导致死亡和后天致残的主要病因,平均每28秒就有一人因脑卒中去世。

前述最新发表的研究选取了426名年龄在18至49岁之间的原因不明的缺血性中风患者,并根据其年龄和性别与另外426名未患中风的人进行对照研究。该研究采用问卷调查的方式,收集了中风患者在发病前一个月内的压力水平。通过对问卷得分进行计数,总分0到13代表低压力;14到26代表中等压力;27到40代表高压力。结果显示,中风患者的平均得分是13,而未患中风的参与者的平均得分是10;46%的中风患者压力水平为中等或较高,而在未患中风的参与者中,这一比例仅为33%。

通过调整排除教育水平、饮酒和血压等可能影响中风风险的因素后,研究人员发现,对于成年女性而言,处于中等压力状态下,其中风的风险增加约78%而成年男性的压力程度与中风风险的相关性不显著。

研究人员表示,值得注意的是,由于高压力水平的人群可能不易参与此类研究,这将影响研究结果,使得结论存在一定局限性。

“我们需要进行更多研究,探究为什么感受到压力的女性的中风风险更大”,参与该研究的芬兰赫尔辛基大学医院的尼古拉斯·马丁内斯-马詹德(Nicolas Martinez-Majander)博士表示,“此外,也要进一步明确为什么女性在中等压力下患中风的风险高于在高压力状态下的风险。我们通过更多地了解压力对中风的影响,以期找到更好的方法来预防中风”。

MiniMax发布新一代开源模型,首次大规模实现线性注意力机制

1月15日,澎湃科技(www.thepaper.cn)获悉,AI独角兽企业MiniMax上海稀宇科技有限公司(以下简称“MiniMax”)发布并开源新一代01全新系列模型。该系列模型包含基础语言大模型MiniMax-Text-01和视觉多模态大模型MiniMax-VL-01。MiniMax称该系列模型可以实现高效超长文本输入。MiniMax认为,2025年将是Agent高速发展的关键年份,无论是单Agent系统还是多Agent系统,都需要更长的上下文来支持持续记忆和大量通信。

据了解,MiniMax-01系列模型首次大规模实现线性注意力机制,传统Transformer架构不再是唯一的选择。

MiniMax-01系列模型核心性能在多项任务评测结果显示结果

目前领先的大语言模型大都基于Transformer架构,而Transformer核心的自注意力机制是其计算成本的重要来源。为了优化计算效率,MiniMax研究社区提出了稀疏注意力、低秩分解和线性注意力等许多技术。通过使用线性注意力,原生Transformer的计算复杂度可从二次复杂度大幅下降到线性复杂度,在处理长输入的时候具有非常高的效率。

据了解,该模型的参数量高达4560亿,其中单次激活459亿。模型综合性能比肩海外顶尖模型,同时能够高效处理全球最长400万token的上下文,是GPT-4o的32倍,Claude-3.5-Sonnet的20倍。

MiniMax认为,2025年将是Agent高速发展的关键年份,无论是单Agent系统还是多Agent系统,都需要更长的上下文来支持持续记忆和大量通信。MiniMax-01系列模型的推出,正是为了满足这一需求,迈出建立复杂Agent基础能力的第一步。

此外,MiniMax声称受益于架构的创新、效率的优化、集群训推一体的设计以及内部大量并发算力复用,得以用业内最低的价格区间提供文本和多模态理解的API,标准定价是输入token1元/百万token,输出token8元/百万token。

目前,MiniMax-01系列开源模型已应用于MiniMax旗下产品海螺AI,并在全球范围内上线,企业与个人开发者可前往MiniMax开放平台使用API。

北京将举办全球首个人形机器人半程马拉松比赛,支持更换电池

在北京市政府新闻办公室举行的发布会上,北京经济技术开发区(北京亦庄)发布消息称,将于4月13日举行北京亦庄半程马拉松赛,全球首个人形机器人半程马拉松赛将同期举行。

本次赛事采取机器人和运动员“同步报名、同一赛道、同时起跑”的原则。人形机器人将与运动员在起点同时鸣枪起跑,共跑同一路线。起点位于南海子公园一期南广场,终点位于通明湖国家信创园。

本次赛事将机器人的关门时间设置为3小时30分钟左右。在比赛过程中,机器人可更换电池,也可通过更换机器人以接力形式参赛。依据比赛过程中完赛时间、机器人更换次数进行综合评价,比赛过程中更换机器人每次罚时10分钟。

赛事设置了冠、亚、季军,还设置了完赛奖、最优耐力奖、最佳人气奖、最佳步态奖、最佳形态创意奖等系列奖项。比赛报名时间为2025年3月5日10时至2025年3月11日17时。

对话OpenAI前全球商业化负责人:效率、多模态、Agent是2025年AI的三大关键词

过往的2024年,AI在投融资市场呈现火热的趋势,美国“科技七巨头”市值增长了6万亿美元,类似OpenAI、Perplexity、xAI和Anthropic等AI明星企业都在2024年下半年频频传出新的融资消息。

和海外热火朝天的投资相比,中国AI市场经过两年的投入,行业竞争加剧,有不少创业公司开始扛不住大模型预训练消耗的资金和精力。2025年伊始,零一万物被曝其超大模型已经交由阿里训练,零一万物负责小参数、适中的行业模型。其创始人李开复对此回复称,“大家都看得很清楚,只有大厂能够‘烧’超大模型。”

“我不认为AI的价值在于专注开发模型,更重要的是应用,制胜之道是构建出更具有性价比、让每个人都能使用的平台和应用程序。”近日,OpenAI前全球商业化负责人、人工智能与商业战略专家Zack Kass在接受澎湃科技(www.thepaper.cn)专访时表示。

OpenAI前全球商业化负责人、人工智能与商业战略专家Zack Kass

Zack Kass认为,在过往的一年,AI价格变得更加低廉是显而易见的,这意味着仅专注模型本身和技术变化是不够的,让AI变得更加有性价比是一个发展趋势。对于中国AI初创公司来说,最应该关注的是将消费者应用程序变得更好、更高效、更具有性价比。

在Zack Kass看来,效率、多模态与AI Agent将是2025年AI的三大关键词。效率将推动AI技术的大众化,多模态将拓展AI的应用场景,而AI Agent则有望彻底改变软件行业的盈利模式。

【以下对话全文】:

AI正迅速变得更具有性价比

澎湃科技:就2024年AI整体的发展,你观察到哪些趋势性的变化?

Zack Kass:一方面我认为,其实人们并没有注意到人工智能对每个人的日常生活有多大的改善,仍在追问“AI泡沫”;另一方面,AI的价格迅速下降,这让我意想不到。这意味着,模型和技术变好是不够的,还要让它变得便宜。

成本的大幅降低意味着技术的可获取性大大提高,这在历史上往往预示着一场新经济的爆发式增长。当关键资源变得廉价时,通常会带来巨大的积极变化,我们希望AI尽可能便宜,这是一个大的趋势。

这个趋势对中国来说尤其有趣,这些模型的压缩使得它们能够以非常低廉的成本进行推理,从而实现技术的普遍平等。在这种情况下,我们实际上无法限制技术的获取。随着模型成本的持续降低,“单一模型提供商可以控制世界”的观点也站不住脚。

现阶段,依然很多人在警惕AI泡沫,认为过度夸大了人工智能的重要性,但我的看法是,现阶段人们还没有完全意识到人工智能真正的潜力。

澎湃科技:最近创新工场的联合创始人李开复在接受媒体采访时说,未来零一万物将不再追求训练超级大模型,创业公司投资大模型预训练的性价比太低。你怎么看?

Zack Kass:开发前沿模型是重要的,但更重要的是应用。李开复在这场大模型竞赛中的结果,并不是没有预测到。

我有一个“模型收益递减理论”,基本上是说,在某些时候,下一个新模型的出现并不重要。但在某些时候,新模型的出现又如此不可思议,然而总有一天新模型的出现会对我们不再那么重要,这表明朝着这个结果努力并不是真正的制胜之道,制胜之道是构建每个人都能使用的平台和应用程序。

澎湃科技:有没有你觉得在商业化做得比较好的AI公司?有哪些特点?

Zack Kass:Perplexity非常出色,因为它建立的模型是专门为一个非常关键的应用——搜索设计的。Perplexity把重点完全放在搜索这个巨大的类别上,建立了一个训练有素的模型。

我认为Perplexity的最终模式会是付费版本,它以后会卖广告的。更有趣的是,已经能看到很多软件公司在大规模地扩展自己的产品,很多人都在想办法在自己的软件产品中销售新的人工智能产品。

PerplexityAI

澎湃科技:对于中国企业想要利用AI的,你有什么建议?

Zack Kass:对于中国企业来说,采用人工智能有两种方式:第一种是改进内部流程,让AI帮助企业更好地运行,尤其是如果你是一家中小型企业,这样做就会非常有意义。互联网给我们带来了电子商务,一种全新的购买商品和服务的方式。反过来,AI也将以几乎无法想象的方式呈现新的商业模式,机会显然无处不在。

如果我是中国创业者,会更倾向于在AI软件或AI应用领域,尤其是生活消费类的方面。如果我成立一家人工智能公司,我会为像街角商店这样的消费场景开发人工智能软件。

总体来说,人们日常生活中涉及衣食住行的这类小生意,很容易快速实现商业化,也具有市场潜力,所以我认为向这些公司销售AI将会非常容易。

2025年的关键词是效率、多模态与AI Agent

澎湃科技:你对于2025年AI的发展有哪些预测?AI如何更好地融入我们的生活?

Zack Kass:目前,我们正处于第一个阶段——增强应用阶段。这在中国十分常见,即现有的应用程序,如微信等,现在借助AI获得授权或增强能力,我们只是接受了AI的存在,并将这些模型应用于现有应用程序中,从而现有世界的效率提高了30%~40%,用相同的应用程序能做更多事情。

接下来我们将进入自主代理(AI Agent)阶段。如今,大多数人已知晓自主代理,我们正快速接近一个不再需要打开应用程序并使用由AI授权或增强的应用程序的世界,而是将任务分配给AI代理,由其在应用程序和网络体验中执行任务。这令人兴奋,未来我们会花更少时间在应用程序本身上,而会把更多的时间将任务分配给在应用程序中执行任务的代理。

此外,在未来可能出现的多模态(multi-agent)AI世界中,可以在一定程度上操控手机上的不同软件,尤其是在通过不同的输入方式(如语音、图像、文字等)与手机应用程序进行交互时。

第三阶段是自然语言操作系统多模态。这一阶段稍显复杂,但主要会发生两件事:首先,我们将从携带个人电脑转变为佩戴它们,如以眼镜、手表或工作内容预测工具等形式出现。各大消费电子公司及部分非消费电子公司都在朝此方向努力,OpenAI也不例外。

我的观点是,世界很快将获得完全整合的、不计量的智能,能准确学习我们工作方式并嵌入到各种智能界面的世界里,未来了解大多数未知的事情并变得异常容易,人们也将认为完全获得智能是理所当然的。

澎湃科技:在你看来,人们应该如何应对这种变化?

Zack Kass:首先,你必须为事情的持续变化做好准备。现在世界发展得非常快,我建议大家将自身的适应性作为个人的核心战略,我希望所有的年轻人都能学会适应变化。现在仅仅说“我们可能会改变”是不够的,现在要求我们必须说“我们将改变”。

很多年轻人问我,“我应该学习什么才能获得一份好的工作”?我有一个令人失望的答案,“其实学什么并不重要”。你的专业与经济成果之间的正相关性正在快速下降,你学习的内容不再真正影响你的工作质量。

我并不认为AI会让更多人失业,这是人们对AI革命的误解。我最反感的是,我们开始围绕AI做不到的事情进行追问思考,我称之为“负空间(Negative Space)AI”。在美国硅谷每个人都在谈论AI能做的所有事情,关注AI积极的一面。比如,我去酒吧,有人发现我在OpenAI工作过,他们最喜欢问的问题是:“OpenAI接下来要建造什么?GPT-5什么时候到?”这是我最喜欢的问题,从来没有人问过我:“什么是AI不会实现的?”

如果担心会被AI取代的话,我们应该开始提升人文素质,AI将创造众多新兴工作岗位,并在全球范围内积累巨大价值,推动生活成本不断降低。

中国深海生命科学研究迈入国际前沿:“溟渊计划”实现多项全球突破

深渊钩虾样本。吴跃伟 图

3月7日上午,由上海交通大学、中国科学院深海科学与工程研究所、华大集团联合发起并执行的“溟渊计划”(马里亚纳海沟环境与生态研究计划,英文简称“MEER计划”)第一阶段成果发布会在海南三亚召开。

澎湃科技获悉,溟渊计划此次实现了多项全球突破,包括:人类首次到达雅浦海沟最深点,首次对深渊生态系统进行系统研究,首次建立全球深渊生物大数据库并开放共享等,这些成就的取得标志着中国深海生命科学研究迈入国际前沿。

“溟渊计划”研究团队多次深入深渊海底,发现深渊微生物在最深海域超高静水压(600-1100个大气压)下的异常繁盛,发现深渊两种代表性宏生物与深渊微生物之间存在趋同的适应机制,即深渊存在跨越物种边界的“共适应”策略,从而串联起了独特的深渊生态系统,描绘了首个海洋最深生态系统的图景。

在发布会上,“溟渊计划”发起人,上海交通大学生命科学技术学院/微生物代谢国家重点实验室、深部生命国际研究中心主任肖湘表示,“我们现在对于海底的了解,甚至还比不上对月球表面的了解。到海洋最深处去采样,它的难度就是挑战到月球采样的难度。”

深渊岩石样本。吴跃伟 图

早在上世纪初,就有学者投入到深渊微生物研究,然而受限于抗高压设备的制作技术,多个国际同行组织的深渊大科学计划最终未能达到良好预期。

在2020年之前,只有9人曾到达过海洋最深点马里亚纳海沟底部。2020年底,成功完成工程海试的中国第一艘万米级载人潜水器“奋斗者”号,凭借其独特的采样能力和超长海底作业时间,成为当今全球唯一具备深渊系统调查采样能力的载人潜水器。

2021年10月至12月期间,肖湘带领上海交通大学研究团队,与中国科学院深海科学与工程研究所、华大集团等国内多家科研单位共同参加了“奋斗者”号载人潜水器的深渊航次。科学家团队对马里亚纳海沟、雅浦海沟和菲律宾海盆6000米-11000米水深区域进行系统采集,获得水体、沉积物、宏生物等样本2000余份,其中雅浦海沟最深点为人类首次到达。

3月7日,“溟渊计划”(马里亚纳海沟环境与生态研究计划,英文简称“MEER计划”)第一阶段成果正式发布。

在深渊极端环境里,每下潜一米都是对设备性能的巨大挑战,每停留一秒都是用生命极限探索极端生命的生死竞速。团队顶着5次超强台风的冲击,经过33次科学例会的灵感碰撞,攻克了深渊极端高压环境下的采样与实验技术难题,建立了“深海采样-基因测序-数据分析-实验室验证”全链条科研模式。

“做这些数据(和研究),我们是有一个决心的,我们是去系统地采集,它是不可重复的,因为这是2021年10月到12月人类活动对深海影响的一个实时记录……一百年以后甚至一千年以后,人类再次考察(这个区域),他们看到的地球环境,是不是跟我们今天还一样?他们也会来评估我们今天对深渊的认识是不是客观真实的。”肖湘说。

肖湘透露,对于MEER计划科研成果的展示,“有一个美学设计,事实上我们这个系列一共是9篇论文(5篇待发),包括了‘实景’篇——深渊现场、‘解构’篇——生态解构、‘印象’篇——共性原则,这些组合起来就是深渊的全景画廊。”Cell杂志除了今天以封面专辑形式发布4篇论文,还专门给MEER计划开通了一个网站,未来的系列文章都会在这个网站上进行展示。

美国初创AI公司Perplexity提议与Tiktok美国业务合并

在短暂停止服务后,短视频社交媒体平台TikTok19日恢复在美国的服务。但有消息称,在18日早些时候,TikTok暂停服务前,美国人工智能初创公司Perplexity向TikTok母公司字节跳动提交了一份收购提案。据美国财经门户网站Investor’s Business Daily报道,该提案提出将Perplexity、TikTok美国以及新的资本合作伙伴合并成一个新实体。此合并方案允许字节跳动的大多数现有投资者保留股权。

19日,TikTok发表声明表示,将与美国候任总统特朗普一起寻找维持TikTok应用程序在美可用的长期解决方案。特朗普当日在社交媒体上发文,呼吁各公司不要让TikTok处于停止运转状态。特朗普说,他将于20日发布一项行政令,推迟TikTok“不卖就禁用”的法律生效时间,同时他还为Tiktok继续在美营运开出了条件,声称希望美国在合资企业中拥有50%的所有权。

Perplexity成立于2022年,是由AI 聊天机器人驱动的研究和对话搜索引擎,被称为生成性AI热潮中最有价值的年轻AI初创公司之一。该公司的早期投资者包括亚马逊创始人和新任CEO杰夫·贝索斯(Jeffrey Bezos)、Nvidia( NVDA )和风险投资公司New Enterprise Associates。在最新一轮融资后,Perplexity估值为90亿美元,大家对于其推出的收购提案不抱期望。Wedbush分析师Daniel Ives在一封电子邮件中对Investor’s Business Daily表示,“我们认为对Perplexity的收购无望,因其内在价值太低,不可能达成400多亿美元的交易。在TikTok竞争激烈的竞标过程中,马斯克是领先者。”

此前,TikTok已否认或将美国业务出售给马斯克,称未与马斯克方面谈过潜在的出售交易,且没有与中国监管层讨论过所谓出售的方案。马斯克现已成为特朗普的重要顾问,拥有社交媒体平台X,和杰夫·贝索斯(Jeff Bezos)是长期竞争对手。 

此外,Perplexity的竞争者虎视眈眈。初创公司OpenAI的ChatGPT功能与Perplexity相似,同样是通过访问网络搜集信息,进行总结、整合、输出答案。OpenAI近期获得66亿美元的新融资,估值达到1570亿美元。谷歌股价在2025年上涨了3.5%,去年上涨了37%,有了TikTok,Perplexity可能会成为Alphabet(GOOGL)更强大的竞争对手。

百万真机数据只是杯水车薪,数据匮乏成为具身智能行业困境

·目前具身智能领域正处在类似于从GPT-1到GPT-2的过渡阶段,连最基础的物理世界的数据都还十分匮乏。遥操作方式获取的数据成本过于高昂且采集效率低,导致行业内很难获取。除了缺乏高质量数据,徐良威认为,具身智能数据服务行业内面临的首要难题是缺乏统一的数据集定义标准。

过去的一年,具身智能、人形机器人引发的关注与日俱增,但喧嚣过后,这一行业的发展也正面临着艰巨的挑战,其中训练具身智能大模型所需要的高质量数据在哪的问题成为眼下行业的一大共同的困扰。

日前,上海机器人初创公司智元机器人正式开源百万真机数据集AgiBot World使得数据缺乏问题再次被提起。智元机器人联合创始人、首席技术官彭志辉(网名为“稚晖君”)表示,在具身智能领域,真机数据的采集成本和门槛非常高,此次开源希望众多科研团队基于真实数据进行具身智能算法的训练,加速技术创新和产品应用。但在业内人士看来,“百万条真机数据量”对于行业来说只是杯水车薪,“只能训练一个动作的泛化,譬如分拣,对实现理想状态中的具身智能还远不够。”

除了数据缺乏的困扰之外,已有数据的标准化也是一个待解难题。

连最基础的数据都缺乏

不同于语言大模型的训练得益于互联网上海量的数据,具身智能“大脑”的训练则需要更多来自物理世界即真实世界动态环境中的交互数据,如何解决物理世界数据匮乏问题,成为眼下人形机器人技术演进路上最大的难题。

人形机器人创业企业之一——银河通用的创始人兼CTO、北京大学助理教授王鹤此前在不同场合多次提及具身智能领域面临数据集短缺的难题。王鹤认为,通用机器人背后的技术一定是具身大模型,要用数据驱动基础机器人大模型,让机器人能够有极高的泛化性和跨行业应用能力。但现有数据量不足以支持通用机器人的发展。

泛化性是指模型经过训练后,能够将一项行为应用到陌生的应用场景中的能力,在陌生场景中能自主识别任务并采取行动。国家地方共建人形机器人创新中心(以下简称“国地中心”)相关数据负责人在接受澎湃科技(www.thepaper.cn)采访时表示,行业内对于机器人泛化数据的获取始终是一大难题,现阶段,特斯拉的Optimus仍需要人为远程操作来帮助机器人完成任务,还不具备泛化能力。

国家地方共建人形机器人创新中心具身智能数据看板,澎湃科技记者拍摄。

北京航空航天大学机器人研究所名誉所长王田苗此前在接受澎湃科技采访时也指出,数据的匮乏让人形机器人很难具备泛化性。当前,机器人任务泛化、感知泛化和运动操作的三个泛化数据很难获取,比如让机器人叠衣服、骑自行车等这些数据很难得到。

王鹤团队从2023年开始探索大规模的灵巧手数据合成和大规模的泛化,2024年合成了10亿规模的数据体量,用于训练机器人的灵巧手。

总部位于深圳的一家向具身智能机器人提供基础场景数据和解决方案的创业公司艾欧智能联合创始人徐良威告诉澎湃科技,经过一年多对于机器人技术路径的探索发现,“只有通过海量数据训练才能够真正地通向具身智能”已经成为行业共识,通过仿真数据实现智能的可能性远远小于使用真实数据。然而,目前具身智能领域正处在类似于从GPT-1到GPT-2的过渡阶段,连最基础的物理世界的数据都还十分匮乏。

在徐良威看来,对于训练具身智能泛化能力来说,AgiBot World这种百万量级的数据集虽然已经取得明显的进步,但只是“杯水车薪,洒洒水而已”,达到理想的效果需要更大量的数据。

高质量数据获取采集成本过于昂贵

澎湃科技记者了解到,在具身智能领域实践中发展出四种具身智能采集训练数据:第一种是遥操作机器人数据,即需要一位人工数据采集员戴着遥操作手套,手把手示教,获取真机操作数据。通过这种方式获取的数据质量最高,但成本昂贵。第二种是仿真合成数据,在虚拟的3D仿真环境里从无到有地积累训练数据,这类训练数据以生成数据为主,与真实世界仍有较大差异。第三种是通过人类动作捕捉数据,也称为动作捕捉或动作追踪数据,是通过传感器、摄像头或其他设备,精确记录和分析人体运动的技术。这类方式获取的数据质量较高,但通过人类动作捕捉获取的数据,与机器人能否适配仍存在一定差异,需要后期继续做构型对齐相关工作。第四种数据来源是通过互联网获取人类动作视频或图像数据。这类方式的特点是能获得海量数据,但都是单一模态、非结构化且无标注的二维图像或视频信息,质量很差。

国地中心数据负责人指出,目前行业内最匮乏的是通过遥操作方式获取的高质量数据,仿真合成类数据获取成本低,但仍需要弥合仿真与现实世界的差距。然而,遥操作方式获取的数据成本过于高昂且采集效率低,导致行业内很难获取。

数据训练员穿上特制的动作捕捉服装训练人形机器人捕捉数据 

“一台遥操设备投入约35万元,再加上人工数据采集员的成本,每人每天大约采集500条数据,人工成本至少需要300元,即便长期投入也无法保证成功。”国地中心数据负责人估算,特斯拉的人形机器人Optimus至少需要数百万小时的数据才能完全准备好在特斯拉工厂工作,这期间可能需要至少5亿美元的数据采集成本。

上述国地中心数据负责人向澎湃科技透露,即便银河通用专注于强化机器人大脑模型,强调仿真合成数据的使用,但仍面临一定挑战。“在仿真环境中参数看似正确,但在物理世界中,即使是微小的偏差也会导致完全不同的结果。比如,人形机器人执行蹲下起身这类动作时,不同机器人可能会有不同表现,电机参数任何微小变化可能会导致机器人出现完全不同的行为,很难控制。”

由于泛化数据采集成本高、获取难度大,国地中心数据负责人透露,现阶段行业内大部分按照1:9或者1:10的数据比例训练机器人,即一条遥操作机器人数据配以9条或者10条仿真合成数据,但这个比例目前还没有定论。

缺乏统一标准的数据集

徐良威认为,另一个关键问题是如何实现高效的数据采集。虽然通过人工操作机器人可以获取高质量的数据,但这种方式的效率极低。徐良威称,智元对外称一周可采集50万条数据,综合一年数据量也不过只能达到千万量级,这对具身智能训练效率非常低,难以提速。

除了缺乏高质量数据,徐良威认为,具身智能数据服务行业内面临的首要难题是缺乏统一的数据集定义标准。尽管海外有Google这类科技巨头已开源部分数据集,国内也有智元机器人开源百万条真机数据集等,但不同公司开放的数据集格式能否兼容、能否保持数据质量的一致性很难说。

“北京和上海的开源数据集能否兼容、数据格式是否一致,以及数据托管的方式有哪些不同,这些还有待出台统一的数据标准。”徐良威说,目前国内众多机器人公司正处于“百花齐放”的状态,在数据管理上也各自为政,这导致公司之间沟通成本非常高。

在数据处理上,目前行业内也缺少统一的数据处理标准。“不同公司、机构或平台对处理数据的方法不一,机器人如果要有效利用这些数据,还需进一步处理。”徐良威说,每个团队或公司可能都需要从头开始处理标注数据,这会浪费大量时间和资源,且无法保证训练结果的通用性。

近期,国家地方共建具身智能机器人创新中心牵头立项的《人工智能具身智能数据采集规范》工信部行业标准,规范了具身智能数据集采集的格式,使不同公司采集的数据可以互相共享开源,加速模型“涌现”,在徐良威看来,对从业者来说无疑是一个积极的信号。

2025年会出现更多的数据采集训练场

世界模型的出现似乎给人形机器人带来一些新的希望。去年12月,李飞飞的世界模型开启了从数字世界向物理世界的跨越征程,实现了从一维数字智能向三维空间智能的重大转变。2025年1月6日,英伟达创始人兼首席执行官黄仁勋在2025CES(国际消费类电子产品展览会)期间,推出了涵盖生成世界基础模型的Cosmos世界基础模型平台,旨在加速自动驾驶汽车、机器人等物理AI系统开发。黄仁勋认为,“机器人的ChatGPT时刻即将到来。与大语言模型一样,世界基础模型对于推进机器人和自动驾驶汽车的开发至关重要。”

徐良威称,这一类世界模型为通用智能提供空间、时间、物理、语义等各方面的模型表征。理论上来说,一方面,世界模型的成功使得机器人“理解世界”具备可能性;另一方面,世界模型能够在各维度下生成符合世界规律的数据,有潜力成为机器人合成数据的新范式。不过,虽然世界已经有一些阶段性的成果推出,但真正在机器人上应用,直至能够商业落地也还需要进一步发展。

数据缺乏在成为业内共识的同时,各方也在采取解决方案。2024年8月,特斯拉对外高薪招募“数据采集员”;2024年12月27日,北京国地共建具身智能机器人创新数据采集基地亮相。

据了解,从2024年下半年开始,位于上海张江的国家地方共建人形机器人创新中心也在搭建基于自己平台的数据采集训练场,目前,训练场的场地搭建工作以及数据采集机器人设备也基本到位,2025年计划招聘一些数据采集员来配合遥操作数据采集。2025年预期量产机器人的数量会上升,随之带来的数据采集量也会大幅增长,在数据采集成本方面也会下降。“今后可能会有一批便携式数据采集工具出现,这样会进一步降低数据采集成本。”相关人士透露。

在徐良威看来,北京、上海相继表示要共建具身智能机器人创新数据采集基地和搭建实训、模拟应用场景建设,核心价值远不止数据采集本身,更重要的是能够集中资源、缩短数据积累的时间,也相应地缩短了具身智能市场准入时间。他预测,2025年不同地区会加快建设数据采集训练场,以便从0到1的过程中尽快实现机器人的落地应用,此外数据采集方式将更加多样化。